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An examination of the isotropic vorticity theory was made in an adverse pressure 
gradient flow based on experimental data obtained in a conical diffuser having a total 
divergence angle of 8" and an area ratio of 4: I with fully-developed pipe flow a t  entry. 
The results showed that the rates and the ratio of production and dissipation of the 
turbulent vorticity were constant in the core region of the diffuser but increase sig- 
nificantly in the wall layer. The overall vorticity balance was essentially the same a t  all 
axial stations. The analysis of Batchelor & Townsend (1947) for isotropic vorticity was 
found to be valid in the core region of the diffuser for an order-of-magnitude higher 
R, (200 < R, 6 600) than in grid turbulence. The magnitude of the skewness of 
au,/at was constant in the core region and comparable to that for grid turbulence. Also, 
this region of constant skewness extended over a larger portion of the flow cross- 
section compared to pipe flow. On the basis of these results, it was concluded that 
assumptions of isotropy in the fine structure are valid in the core region of the 
diffuser. 

1. Introduction 
The turbulent flow of real fluids is of a dissipative nature. Owing to this dissipat'ion 

of turbulent energy, a continuous supply of energy from some external source is 
necessary to maintain the turbulence. This external source is usually the mean flow. 
The rate of supply of kinetic energy to the turbulence is the rate a t  which work is done 
by the mean rate of strain against the Reynolds stresses in the flow as it stretches the 
turbulent vortex lines. The extraction of this energy from the mean flow occurs a t  large 
scales and this gain is balanced by viscous dissipation of energy a t  very small scales. 

The smaller eddies are exposed to the strain-rate field of the larger eddies. Because of 
the straining, the vorticity of the smaller eddies increases, with a consequent increase 
in their energy at the expense of the energy of the larger eddies. In  this way, there is a 
flux of energy from larger to smaller eddies which subsequently undergo viscous decay. 
The mechanism of vortex stretching for energy transfer to smaller eddies also makes the 
smaller eddies lose all sense of direction and thus attain the state of isotropy, a concept 
introduced by G. I. Taylor in 1935. By considering the multiple-scale cumulative 
expansion of spectra for isotropic turbulence, Tatsumi, Kida & Mizushima (1978) have 
shown that the small-scale structure is essentially independent of its large-scale 
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structure. Also, the structure of these smaller eddies is similar for all turbulent 
flows (Batchelor 1947). 

Though the supply of turbulent energy is at large scales, its dissipation is at  the 
smallest scales. These smaller eddies also represent the turbulent vorticity field and 
thus characterize the flow as rotational and dissipative. Therefore, the study of the 
turbulent vorticity balance is essentially an attempt to understand the finer struc- 
ture of turbulence which is inevitably required for better understanding of the tur- 
bulence mechanism. Furthermore, in most turbulent flow calculations, the isotropic 
vorticity theory is assumed and yet it has seldom been verified. The object of the 
present work was to study the applicability of the isotropic vorticity theory to a flow 
subjected to adverse pressure gradient. The study, in effect, tests the similarity of the 
isotropic character of smaller eddies as proposed by Batchelor (1947). 

Physically, a diffuser converts mean kinetic energy into flow energy whichproducesa 
positive (adverse) pressure gradient in the direction of flow. This also increases the 
intensity of highly-energetic turbulent processes near the wall, which results in high 
turbulence intensities in the flow field. This high intensity of turbulence makes the 
diffuser research experimentally challenging and, furthermore, the effect of adverse 
pressure gradient on the structure of turbulence is desirable from the point of view of 
scientific knowledge and engineering application. The conical geometry of the diffuser 
provides an axisymmetric distribution of the mean and turbulent quantities. 

The conical diffuser chosen for this study was the same as that used by Okwuobi & 
Azad (1973), having an 8" included angle and an area ratio of 4:  1 with fully-developed 
pipe flow at entry. Soaan  & Klomp (1967) have shown that such a diffuser possesses 
optimum pressure-recovery characteristics. 
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2. Theoretical relations 
The general turbulent vorticity equation can be obtained directly from the Navier- 

Stokes equation [Corrsin & Kistler 1955, equation (12); Tennekes & Lumley 1972, 
equation (3.3.38)]. The vorticity equation for isotropic turbulence was derived by 
von KBrmBn in the form [as reported by Batchelor & Townsend 1947; also deduced by 
Corrsin & Kistler 1955, equation (17)] 

where wi = eiik auk/axj; o' is the r.m.s. of the fluctuating vorticity vector, ui is the 
fluctuating velocity in xi direction, t is time, and v is the kinematic viscosity of the 
fluid. The first term on the right-hand side is positive and represents the rate of produc- 
tion of vorticity, whereas the second term on the right-hand side represents a rate of 
destruction of vorticity due to viscosity (viscous transport and dissipation). Since 

and (azw;/ax;) is zero in a homogeneous field, the term is essentially negative. 
In  a flow field, when positive extension of a vortex filament occurs, the magnitude of 

the local vorticity increases owing to consequent lateral contraction and angular 
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acceleration. Thus, in parts of the fluid where there is a positive rate of extension of the 
vortex filament, the magnitude of the vorticity will be high. Taylor (1938) pointed out 
that this production of vorticity due to random, diffusive extension of vortex lines is a 
fundamental process in the mechanics of turbulence and is the reason for the very high 
rate of dissipation of turbulence energy. 

The effect of extension of the vortex lines is to tend to make the vorticity distribu- 
tion ‘spotty’, with small regions of high vorticity; on the other hand, the effect of 
viscosity is strongest in regions of high vorticity, and tends to diffuse it evenly through- 
out the fluid (Batchelor & Townsend 1947). The vorticity equation ( 1 )  represents the 
balance between these effects, and a simplified form of this equation which could be 
used for comparison with experiment has been given by Batchelor & Townsend as 

where S is the minus skewness factor of the probability distribution of aul/axl (the 
minus sign is introduced because the skewness is found to be negative) defined as 

The contribution to dw‘2/dt from the process of vortex extension is directly propor- 
tional to S. The factor G I R ,  is related to the decay of vorticity due to viscosity and is 
defined as 

and R, = &/v, (6) 

where h is the Taylor microscale. 
Representative measures of the factors S, G and h can be obtained by measuring 

time derivatives of u1 and using Taylor’s assumption of space-time equivalence. Thus 

and (9) 

Using the isotropic assumptions, Batchelor & Townsend (1947) further simplified the 
vorticity equation (3) to the following form : 

G = +Q+LR 2 A  8, (10) 

which may be rewritten as (for S = 0.39 as suggested by Batchelor & Townsend, and 
neglecting so for large Rh) 

2G/RAS = 1.0. (11) 

Based on theoretical considerations, Tatsumi et al. (1978) calculated values of S for 
isotropic turbulence and suggested its upper limit to be 0.65 (lower limit being 0.3). A 
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value of S higher than 0-39 would further decrease the importance of the first term on 
the right-hand side of equation (10) and thus provide additional justification for the 
assumptions of Batchelor & Townsend (1947) in deriving equation (1 1). 

Taylor (1938) indicated that for large Reynolds numbers the vorticity budget 
(equation 1) may be approximated by 

Equation (1  2) is the same as equation (1 1 )  given by Batchelor & Townsend (1  947) for 
isotropic flow in terms of S,  G and R, parameters. Both these equations imply that the 
terms on the left-hand side in equation (1) are approximately zero and, consequently, 
production of vorticity is balanced by viscous effects. Tennekes & Lumley (1972, 
pp. 89-91) have provided justifications for the derivation of equation (12), on the basis 
of the estimation of the order of magnitude of each term of the general vorticity 
equation (equation (3.3.38), Tennekes & Lumley). They have shown that the produc- 
tion and dissipation terms of equation (12) are of the same order, whereas the transfer 
terms and the remaining production terms are at least an order of magnitude smaller. 
Therefore, for high-Reynolds-number turbulence, these other terms can be neglected, 
thus reducing the vorticity balance to equation (12) (Wyngaard & Tennekes 1970). 

The fine structure of turbulence that is responsible for the viscous dissipation (e) can 
be obtained using the well-known simplified expression 

The above equation makes use of the assumptions of local isotropy and Taylor’s 
hypothesis of frozen turbulence. From equation (13), the Kolmogoroff length (7) and 
time (r,,) scales (of fine structures) can be obtained using the expressions 

q = (v*/& (14) 

and TT = ( v / s ) k  (15) 
The relationship between the large-scale and small-scale structures of turbulence 

can be studied by evaluating the ratios of the length and time scales of these structures. 
For this purpose, the length (L,) and time (re) scales of the energy-containing eddies can 
be computed (Lumley 1970) from 

La = @/3%, RLg = qLe/3Qv = $ / ~ v s  (1% (17) 

and re = q=/2€, (18) 
where q2 is the trace of the Reynolds stress tensor (q2 = ui2 + ui2 + ui2), where ul, u2, us 
are fluctuating velocities in xl, x2, x3 directions respectively, and the prime designates 
r.m.8. value. 

3. Experimental equipment and procedure 
3.1. Wind tunnel and diflwer 

The experiments were conducted in a low-speed open-circuit wind tunnel described 
previously by Azad & Hummel (1971). Briefly, air was blown through an 89: 1 con- 
traction cone and a 74 diameter length of steel pipe (101.6 mm inside diameter) before 
entering the diffuser. 
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FIGVRE 1. Diffuser geometry. 

The diffuser (figure 1)  was machined from cast aluminium. A machined reinforce- 
ment ring (which could be rotated to any angular position) was adapted to the outlet 
end of the diffuser to support the traversing mechanism which employed a micro- 
meter head graduated in 0.001 mm. The probes were mounted on a 2.5 em diameter 
tube entering the diffuser from the downstream end. A taper 22 cm long was fitted 
between the end of the tube and the probe support to minimize any flow blockage 
effect upstream of the tube. 

Okwuobi & Azad (1973) have shown that the flow in the pipe upstream of the diffuser 
is fully developed and, by using forward- and reverse-facing pitot tubes, they have also 
shown that the flow in the diffuser does not separate. 

3.2. Instrumentation 
Mean static pressure along the diffuser wall was measured with a static pressure round 
tube having an external diameter of 1 mm together with a Betz projection manometer 
with 0.1 mm of water-scale interval. No corrections were attempted to  account for the 
turbulence. 

The derivative of the longitudinal turbulent velocity component (au,/at) was 
measured with a special DISA 55P01 gold-plated single hot-wire probe (0.625 mm wire 
length, 2-5 pm wire diameter) set normal to the mean flow. The measurements of q2 
were obtained using a standard DISA 55P51 gold-plated X-probe (1.25 mm wire 
length, 5 pm wire diameter). The single wire was operated a t  an overheat ratio of 0.4 
and the X-wire a t  0.8. The l /d  ratio of the wires in each case was 250. The smaller 
length of the hot wire with relatively large I ld  ratio was chosen for improved fre- 
quency response of .the hot-wire probe used for au,/at measurements. In practice, the 
length of the hot wire a t  best represents a compromise between frequency res- 
ponse and the ratio of signal to noise (Frenkiel & Klebanoff 1975). However, ideally 
the wire length should be of the order of the Kolmogoroff length, which in the 
present study varied from 0.06 mm to about 0.14 mm. The wire length was thus in 
the range of 5 to 10 Kolmogoroff lengths. Therefore, the dissipation estimates (e) used 
in calculating the length and time scales were corrected using Wyngaard’s (1969) 
analysis for a single wire. However, no such corrections were applied to the measure- 
ments of S and G since these were normalized by the quantity (aul/at)2 obtained from 

___. 
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the same probe. Furthermore, the authors are not aware of any satisfactory procedure 
available in the literature for correcting the factors S and G. DISA 55MO1 constant 
temperature anemometers were used in conjunction with DISA 55DlO linearizers. 
Also used were a multifunction turbulent processor TM377 and a time differentiator 
TM-TD-1, details of which have been provided by Arora & Azad (1978~).  

The hot-wire signal was filtered a t  28 kHz before and after each differentiation. For 
this purpose, three built-in filters of TM377 and a Krohn-Hite 3770 filter were used. 
To improve the operation of multipliers in TM377 and to decrease the measuring 
errors, the input signals to the multipliers were amplified considerably but not enough 
to  saturate the corresponding circuit. 

Arora & Azad (1978 b )  have shown that even small amounts of dirt depositions on the 
sensing element can affect its frequency response, thereby giving erroneous results 
particularly of the moments of differentiated signal. Therefore, special care was taken 
in the use and operation of the probe for au,/at measurements. 

4. Results and discussion 
The parameters used for normalizing the experimental data were the pipe average 

velocity (U,) and the piperadius (Rpipe). The radial distribution of data is presented as 
a function of &, which is defined as 

5 2  = X 2 / R p i p e .  

4.1. Preliminary measurements 

Static pressures along the diffuser wall were measured at 42 axial locations for 6 differ- 
ent Reynolds numbers varying from 32 000 to 86 000 based on pipe averagevelocity and 
pipe radius. These static pressure measurements were normalized by the average 
velocity head in the pipe and were found to collapse onto a single curve within the 
experimental error, thus confirming the existence of Reynolds-number similarity. 
Based on this finding, a single Reynolds number of 58 000 was chosen for further study. 

The longitudinal pressure derivatives in the diffuser were obtained by analytical 
differentiation of a fourth-order polynomial (best fit to the experimental data) which 
was then evaluated a t  the desired axial positions. As shown in figure 2, a pressure 
gradient difference of more than an order of magnitude existed between the beginning 
of the diffuser and its exit. In order to study the various regions of pressure gradient, 
the following axial stations were chosen for detailed study: 

69, 67, 65, 61, 57, 50, 40, 30, 24, 18, 12, 6 and 0. 

The numbers refer to distance towards the pipe (in cm) from the diffuser exit. It was 
thought t'hat the study of turbulence vorticity balance at  these axial stations would 
help in understanding the structure of turbulence in the diffuser flow. 

The mean axial velocities for the present experiment were similar to the earlier 
published results of Okwuobi & Azad (1973). Turbulent intensities (u;,ui and ui )  
required for the evaluation of q2 were also similar to that of Okwuobi & Azad (1973). 
The distribution of the stress tensor was qualitatively similar but quantitatively much 
in excess of those in pipe flow. Also, the total kinetic energy in the diffuser increased in 
the downstream direction (Arora & Azad 1978~) .  In the radial direction, the turbulent 
energy showed a peak which shifted slightly towards the diffuser axis with distance in 
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FIGURE 2. Mean static pressure gradient in the diffuser. 

the direction of flow. The peak position of q 2  specifies the edge of the wall layer and 
corresponds to maximum turbulence production (Arora & Azad 1 9 7 8 ~ ) .  In  a diffuser, 
the wall layer (from wall to the maximum p2) expands in the downstream direction. 

4.2.  Length and time scales of $ow 
The distribution of the Kolmogoroff’s length scale (7) and of Taylor’s microscale ( A )  
are shown in figures 3 and 4 for 7 axial stations, as a function of radial distance E2 from 
the diffuser axis. The Kolmogoroff’s length scale generally decreases in the radial 
direction (figure 3). However, data a t  station 50 and further downstream show in- 
creases in the values of ?/ close to the wall. The absence of this feature in initial upstream 
stations is probably due to the lack of data in the wall region. The thickness of the wall 
layer increases in the downstream direction owing to the expanding flow which allowed 
measurements of required quantities in this layer without being very close to the wall. 
Up to station 40 in the downstream direction, values of Kolmogoroff’s length scale 
form essentially a single curve between the diffuser axis and E, = 0.9. Further down- 
stream, 7 values are lower for this radial region and decrease less rapidly with [,. That 
is, in theaxial direction, the magnitude of 7 away from the wall collapses onto a single 
curve for large adverse pressure gradients, and decreases in the region of small but 
constant pressure gradient. 

The Taylor’s microscale distributions (figure 4) peak in the radial direction a t  about 
C2 = 0.4. From each peak position to the wall, the magnitude of h decreases monotoni- 
cally. For a given radial position in the core region, h increases in the axial direction up 
to station 40 and then decreases beyond station 30 thus causing crossing over of some 
of the curves a t  t2 = 1.0, as the expanding flow provides larger region to reach the same 
lower value. However, it is again worth noting that the decrease in h (like that of 7) 
occurs when most of the pressure recovery has already taken place and the pressure 
gradient has become more or less constant. 
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FIGUFZE 3. Variation of the Kolmogoroff length scale 7. Stations (cm): 8, 67; 8,  57; m, 50; 
+, 40; 0 ,  30; V, 18; X ,  6. 

The turbulence Reynolds number R,, obtained using A values [equation ( S ) ] ,  also 
shows a peak initially appearing a t  about c2 = 0.80 which shifts slightly with distance 
in the downstream direction (figure 5) .  The magnitude of R, generally increases 
in the direction of flow, thus indicating an increase in turbulence in the flow 
field. 

The Kolmogoroff time scale of the flow (7J is shown in figure 6 for only 3 axial 
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FIGURE 4. Distribution of the Taylor's microscale A. See figure 3 for the symbols. 

stations. These stations represent the main distinct regions of the pressure gradient 
curves of figure 2. The time scale decreases with increasing radial distance from the 
axis but increases again near the wall as is indicated by the two curves for stations 
towards the exit. 

In an attempt to understand the interrelationship between the larger and smaller 
structures of turbulence, the ratio of the two length and time scales were studied. The 
length and time scales of the energy-containing eddies were obtained using equations 
(16) and (18). These ratios are shown in figures 7 and 8. Both these ratios have a peak 
at  about z 0.75 in the entry region of the diffuser which shifts towards the diffuser 
axis in the downstream direction. From the peak position towards the wall, these 
ratios decrease linearly with radial distance. In the axial direction, the magnitudes of 
the ratios increase in the direction of the flow. Also, this magnitude a t  the exit is about 
twice that at  entry for both the ratios. Large values of these ratios, as found in the 
present study, indicate that the dissipating eddies are independent of the large-energy- 
extracting eddies. This is in agreement with the conclusions of Tatsumi et al. (1978). 
The characteristic Reynolds number [equation (17)] for the diffuser flow had a similar 



394 S. C .  Arora and R.  S. A d  

600 

500 

400 

R A  300 

zoo, 

100 

I I I I 1 I I 1 I 1 
0 0.4 0.8 1.2 1.6 1 .O 

t 2  
FIGURE 5. The turbulence Reynolds number R, in the diffuser. See figure 3 for the symbols. 

variation as indicated by the ratios of length scales (figure 7). However, the magnitude 
of the R,, was approximately an order of magnitude higher than the ratios of the 
length scales. 

Measurements of S (equation 7) for 7 different axial stations are shown in figure 9. 
Curves for the other 6 stations hadsimilar distribution. As figure 9 indicates, values of 
S range between 0.38 and 0.5 from the diffuser axis to (approximately) the pipe radius 
(c2 = 1.0), the latter corresponding approximately with the maximum of u; fluctua- 
tions. A similar range for the values of S was reported by Batchelor & Townsend (1947) 
for a grid-generated isotropic turbulence. They suggested that S is essentially constant 
and has an average value of 0.39. A value of 0.37 was reported by Kuo & Corrsin (1971) 

4.3. Skewness (S)  of au,/at 
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FIGURE 6. Distribution of the Kolmogoroff time scale T,,. Stations (em): 8, 18; 0, 40; 0, 61. 

and a value of 0.44 was estimated by KolmogorofF (Ratchelor 1947). Betchov (1956) 
reported it to  vary between 0.4 and 0.5, whereas Saffman (1963) suggested its range 
to  be from 0.3 to  0.5. A value of 0.42 was reported by Wyngaard & Tennekes (1970) for 
a mixing layer. Recently Tatsumi et al. (1978) obtained values of S on the basis of 
theoretical considerations and reported its limits to be from 0.3 to  0.65 for isotropic 
turbulence. The present results of S from axis to  c2 z 1.0 compare favourably with 
these values. I n  the wall region (between the wall and the point of maximum u; 
fluctuations), however, values of S increase with distance towards the wall. Near the 
diffuser exit, the magnitude of S near the wall reaches as high as 1.0. Since the data 
very close to  the wall were not obtained, its behaviour further towards the wall for the 
diffuser is not known. I n  the entry region, the limited data on S obtained in the rela- 
tively thin wall region were not as high as 1.0. 

The increasing nature of S near the wall has also been reported by Ueda & Hinze 
(1975) in a flat-plate boundary layer, and by Ueda & Mizushina (1977) and by Elena 
( 1  977)  in a fully-developed pipe flow. Their results indicate that, very close to the wall, 
S increases with increasing distance from the wall and reaches its maximum value in 
the region 10 < y+ < 20. Thereafter, it starts to  decrease with increasing y+ (de- 
creasing &) and reaches a constant value of 0.38 a t  y+ 2 100. The present results are 
in agreement with these previously published results in wall-bounded flows, thereby 
indicating that the fine structure of turbulence is similar. Thus, there is a possibility 
that, evenin the diffuser, S would decrease afterreaching its maximumvalue. However, 
a notable difference is that, in the boundary layer and the pipe, S attains its maximum 
value approximately a t  the point where turbulent production is maximum, whereas it 
remains constant up to the point of maximum production in the diffuser. 

Since the distribution and the magnitude of S in the diffuser, except in the wall layer, 
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FIGURE 7.  Ratio of the characteristic length scale to that of the Kolmogoroff scale L,/7;. See 
figure 6 for the symbols. 

is similar to that for an isotropic flow, it can be argued that the assumption of local 
isotropy in the diffuser away from the wall is justified. With the same argument, it can 
be said that the increasing values of X near the wall indicate the increasing degree of 
anisotropy. Arora & Azad ( 1 9 7 8 ~ )  have shown that the ratio of ui/u; in the diffuser 
increases towards the wall, which is a consequence of increase in degree of anisotropy. 
This is also evident from the flatness factor of &,/at (figure 10) which is similar to that 
of boundary layer reported by Frenkiel & Klebanoff (1975). They pointed out that the 
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FIGURE 8. Ratio of the characteristic time scale of the flow to that of the dissipative time scab 
TJT,,. See figure 6 for the symbols. 

assumption of local isotropy is only valid where the flatness factor of au,/at is constant. 
Present results indicate that the flatness factor and the skewness of au,/at are both 
constant in the region from diffuser axis to about & z 1.0. Also, in the boundary layer, 
Klebanoff (1978, private communication) found S to be constant in the region of 
constant P(au,/at). Further towards the wall, the skewness and flatness factor of 
au,/at increase with the increasing distance towards the wall. However, their respective 
variations are such that SaFa(au,/at) (which satisfies the inequality 
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FIGURE 9. Variation of the skewness of au,/at at axial station 7. See figure 3 for the symbols. 

proposed by Betchov, 1956), thus indicating the intermittency of the fine-scale struc- 
ture in the wall layer. This is in agreement with the results of an intermittency factor of 
&,/at and the maximum flatness factor of filtered u1 at station 30 for the same diffuser 
reported by Azad & Hummel (1979). Both of these quantities were reported to be 
almost constant from the diffuser axis to about c2 z 1.0, where the intermittency factor 
was unity and the maximum flatness factor of filtered u1 was about 22. In  the wall 
layer, however, the maximum flatness factor increased and the intermittency factor 
decreased with the distance, thus indicating the finer structure to be spotty and inter- 
mittent. 

Batchelor & Townsend (1947) reported that the measurements of S in their flow were 
independent of the turbulence Reynolds number R,. The values of R, in their flow 
vaned from 20 to 60. For the region where S remained approximately constant (within 
the range 0.37 to 0-5) in the diffuser, the turbulence Reynolds number R, varied from 
200 to 600 (figure l l ) ,  which is an order of magnitude higher than that of the grid 
turbulence reported by Batchelor & Townsend (1947). The values of S obtained in the 
wall region of the diffuser deviated from this range and are not shown in figure 11. 
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FIGURE 10. Flatness factor of au,/at. See figure 6 for the symbols. 

4.4. Second derivative of u1 (G)  

Measurements of G which represent the decay of vorticity in the flow field due to 
viscosity were generally found to increase in magnitude in the axial direction. In the 
radial direction, it also shows a rising trend near the diffuser wall. The increasing values 
of G indicate that the effect of viscosity in smoothing out turbulent fluctuations is also 
increasing. However, in the vorticity equation (3), parameter G appears as G/R,. 
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FIGURE 11. Distribution of S as a function of R,. Stations (cm): 0, 67; 0, 65; A, 61; V, 57; 
0, 50; +, 40; 0 ,  30; A, 24; V, 18; m, 12; X ,  6;  *, 0. 

Since G and R, both increase in the downstream axial direction, their ratio (figure 12, 
owing to similarity, data for 7 stations only are presented) was found to be independent 
of the axial position, thus indicating the linear dependence of Q on R,. This also shows 
that the viscosity effects adjust themselves according to the Reynolds number and are 
always maintained a t  a finite level in the flow field. In the radial direction, the ratio 
GIR,  is constant from the diffuser axis to M 1-0 and increases sharply further 
towards the wall. This behaviour is similar to that of S (figure 9) and indicates a close 
relationship between the production of vorticity and its decay in the flow field. 

4.5. Vorticity balance 

To check the applicability of equation (10) for the flow under investigation, values of 
G (excluding the wall layer) were plotted as a function of R, (figure 13). The solid line 
represents equation (10) with S = 0-39 as suggested by Batchelor & Townsend for 
isotropic flow. Agreement between the grid turbulence data (20 F R, F 60) and the 
diffuser data (200 < R, < 600) is excellent. This shows that Batchelor & Townsend's 
(1947) analysis of isotropic turbulence is equally valid for the present complex flow for 
an order-of-magnitude higher R,, thus justifying the extension of the isotropic ideas 
to the care region of the diffuser flow. 

The approximate isotropic vorticity budget (1 1) was also evaluated for the diffuser 
flow. As figure 14 indicates, equation (11) also holds approximately true in the core 
region of the diffuser where S and GIR,  were both constant. These results in the core 
region, though, show some variation, but generally do confirm the applicability of (1 1) 
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FIGURX 12. Distribution of CIRA in the diffuser. See figure 3 for the symbols. 

and, in turn, justify its extension to the diffuser flow. Since the quantity 2G/RAX 
represents a ratio of decay to production of vorticity, its magnitude near unity implies 
that the rates of production and dissipation are essentially equal. This suggests that 
there is a dynamical similarity at all axial stations of those aspects of the turbulence 
which control the vorticity balance. However, in the wall layer, the plot of 2G/RAS 
increases with the increasing radial distance towards the wall (figure 15). This indi- 
cates that the effect of viscosity is greater and exceeds the effect of vortex extension in 
the wall layer, which contradicts (12). This imbalance in the magnitude of production 
and dissipation in the wall layer would increase the significance of transfer terms in the 
general vorticity balance equation. These terms, thus, could no longer be considered 
negligible and the isotropic vorticity balance equation would not represent the true 
nature of the fine structure in the wall layer of the diffuser. This supports the Kolmo- 
goroff's (1941) hypothesis of local isotropy, which 'is realized on domains not lying 
near the boundary of the flow or its other singularities'. 

Thus the results confirm that, even in shear flows, there exists a region which has 
certain similarities to that of an isotropic flow. The presence of the wall and the ensuing 
complexities prohibit the extension of these isotropic ideas to the wall layer. 
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FIGURE 14. Ratio of the dissipation and production of vorticity as a function of R,. See figures 11 
and 13 for the symbols. 
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FIGURE 15. Ratio of the dissipation and production of vorticity. See figure 11 for the symbols. 

5. Conclusions 
Detailed experimental measurements of the first and second derivatives of the u1 

signal were made in the diffuser. Since these measurements put more emphasis on the 
higher frequency components and thus the fine structure of turbulence, their study 
was undertaken to investigate the applicability of the isotropic theory of vorticity 
production and its eventual decay in the diffuser. 

The results show that Batchelor & Townsend's (1947) analysis for isotropic turbulent 
vorticity balance is equally valid for an order-of-magnitude higher R, in the diffuser 
flow except in the wall layer. In  the core region, where this analysis is applicable, the 
ratio of the rates of production and dissipation of d2 was constant, and the vorticity 
balance was essentially the same a t  all axial stations. 

In the wall region, however, vorticity parameters X and G do not follow isotropic 
patterns, but the behaviour of X is similar to other wall-bounded flows. However, its 
maximum does not coincide to the point of maximum ui fluctuations as in fully- 
developed pipe flow, but rather is attained closer to the wall. This provides a 
larger region in the diffuser where the distribution of S is constant as compared to pipe 
flow. 

On the basis of the present findings, it is concluded that, even in a shear flow sub- 
jected to adverse pressure gradient, the isotropic theory of vorticity can be applied to a 
region far removed from the wall. 
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